Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration

نویسندگان

  • Manabu Tanaka
  • Hisao Haniu
  • Takayuki Kamanaka
  • Takashi Takizawa
  • Atsushi Sobajima
  • Kazushige Yoshida
  • Kaoru Aoki
  • Masanori Okamoto
  • Hiroyuki Kato
  • Naoto Saito
چکیده

The unidirectional porous hydroxyapatite HAp (UDPHAp) is a scaffold with continuous communicated pore structure in the axial direction. We evaluated and compared the ability of the UDPHAp as a three-dimensional (3D) bone tissue engineering scaffold to the interconnected calcium porous HAp ceramic (IP-CHA). To achieve this, we evaluated in vitro the compressive strength, controlled rhBMP-2 release behavior, adherent cell morphology, cell adhesion manner, and cell attachment of UDPHAp. As a further in vivo experiment, UDPHAp and IP-CHA with rhBMP-2 were transplanted into mouse calvarial defects to evaluate their bone-forming ability. The Results demonstrated that the maximum compressive strengths of the UDPHAp was 7.89 ± 1.23 MPa and higher than that of IP-CHA (1.92 ± 0.53 MPa) (p = 0.0039). However, the breaking energies were similar (8.99 ± 2.72 vs. 13.95 ± 5.69 mJ, p = 0.055). The UDPHAp released rhBMP-2 more gradually in vivo. Cells on the UDPHAp adhered tightly to the surface, which had grown deeply into the scaffolds. A significant increase in cell number on the UDPHAp was observed compared to the IP-CHA on day 8 (102,479 ± 34,391 vs. 32,372 ± 29,061 estimated cells per scaffold, p = 0.0495). In a mouse calvarial defect model, the percentages of new bone area (mature bone + trabecular bone) in the 2x field were 2.514% ± 1.224% for the IP-CHA group and 7.045% ± 2.055% for the UDPHAp group, and the percentage was significantly higher in the UDPHAp group (p = 0.0209). While maintaining the same strength as the IP-CHA, the UDPHAp with 84% porosity showed a high cell number, high cell invasiveness, and excellent bone formation. We believe the UDPHAp is an excellent material that can be applied to bone regenerative medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and In vivo Investigation of poly(lactic acid)/hydroxyapatite nanoparticle scaffold containing nandrolone decanoate for the regeneration of critical-sized bone defects

Objective(s): Bone tissue engineering is aimed at the fabrication of bone graft to ameliorate bone defects without using autografts or allografts. Materials and Methods: In the present study, the coprecipitation method was used to prepare hydroxyapatite (HA) nanoparticles containing nandrolone. To do so, 12.5, 25, and 50 mg of nandrolone were loaded into poly(lactic acid) (PLA)/nano-HA, a...

متن کامل

Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect

Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering

In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017